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ABSTRACT
Let p(w) be a polynomial over a domain K. If p splits to linear factors then the
discriminant D(p) is a square in K. In this paper we state an additional
condition on the roots of p which together with the discriminant condition imply
the splitting of p in case that K = C[z] or Z. Some extensions are also discussed.

1. Introduction

Let K be a domain (a commutative ring without zero divisors) with unity. As
usual denote by K[w,,..., w,] the ring of polynomials in ¢t variables w,,..., w.
Assume that p(w) and g(w) are monic polynomials in K|w]. That is

(1) P(W)=W"+a1w""+~-+a,., q(W): w'"+blw"‘_'+...+bm,
a,b€K, i=1,...,n, j=1,....m.

Let K be an algebraic closure of K. Thus p(w) and q(w) split into linear factors
over K:

2) pW)=(w=21) - (Ww=A), gw)=(w—p) (W~ pin).
The resultant R(p, q) and the discriminant D(p) are defined to be

©) Re.a)= Il (-w) D)= JI -y

Isisnlsj=Em si<jsn
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It is well known that R(p,q) and D(p) are polynomials in the corresponding
coefficients

R(p.q)=R(ay,...,a, b\, ..., bn), D(p)=D(a,,...,a.)

[6, Appendix 4, Sec. 9, 10]. That is, R(p,q) and D(p) € K are well defined for
any p(w), q(w)€ K[w]. Let r(w) be a monic polynomial in K|w]. Suppose
furthermore that r(w) can be written as p(w)q(w) with p,q € K[w] (i.e., r(w)is
reducible). Then (3) gives

* D(pq) = D(p)D(¢9)R(p.q)"

Thus, there is a connection between the reducibility of p and the form of
D(p). In particular, if p(w) splits in K then D(p) is a square in K.

If, however, D{p) is a square in K we then can deduce, in general, the
following condition. Let €, be splitting field of p(w). Denote the group of
automorphisms of (), which fix all the elements in K by G(Q,, K). Since any
element of G({),, K) acts faithfully on the roots Ay,...,A, of p we view
G(Q,, K) as a subgroup of the symmetric group S.,.

Clearly, the condition that D(p) is a square in K is equivalent to the condition
izi<j=a(Ai — A;) € K. Thus, any o € G({},, K) must preserve the above product.
In particular,

) G, K)CA,

where A, is the alternating group of degree n.
Motzkin and Taussky [4] considered a condition, sufficient when combined
with (5), to guarantee the splitting of p(w) over K.

THEOREM 1 (Motzkin-Taussky). Let p(w) be a monic polynomial in w over
K{z,{). Assume that K is an algebraically closed field with characteristic not 2.
Suppose also that p(w) = p(w, z,{) is a homogeneous polynomial. Then p(w)
splits into linear factors over K|z, {] if the following conditions hold:

(i) D(p) is a square in K{z,{]; and

(ii) for any fixed values (z,{)# (0,0) the polynomial p(w,z,{) has neither
triple roots nor two distinct double roots.

In fact Motzkin and Taussky stated this Theorem 1 for special polynomials
p(w,z,¢)=det(wl —zA — (B)

where A and B are n X n matrices with entries in K. But their proof applies for
any p(w, z, {) satisfying the above condition.
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The purpose of this paper is to generalize the Motzkin-Taussky theorem to
two distinct cases. First we extend the above resuit to polynomials p(w) over the
ring C[z]. Second we give a version of the above theorem for polynomials p(w)
with integer coefficients. In the first case our main tool is the Riemann-Hurwitz
formula. The second case is an application of a theorem of Minkowski [S,
Theorem 5.4.10] and it responds to a question of H. Furstenberg.

The second author would like to thank Olga Taussky-Todd for her suggestion
to extend the Motzkin-Taussky theorem. We dedicate this paper to her.

2. Reducible polynomials in two variables

Let K be C[z], the ring of polynomials over the complex numbers. Assume
that p = p(w,z) € C[w, z] is monic with respect to w. Then the discriminant
D(p)= D(z)is a polynomial in z. Call p nondegenerate if D(p) # 0. Clearly p is
degenerate if and only if p has a muitiple factor. Assume that p is a
nondegenerate monic polynomial of degree n 22 in w. Then { € C is a zero of
D(z) if and only if the equation

(6) p(w,z)=0

has a multiple zero in w when z = {. If { is not a zero of D(z), then (6) has n
distinct roots (branches) wi(z),..., w.(z) which are analytic in the neighbor-
hood of ¢{. It is, however, possible that D({) = 0, but (6) has n analytic branches
in a neighborhood of { (i.e., { is a singular point of p). A point { is a branch
point if (6) has fewer than n analytic roots in the neighborhood of {. Again this
implies that D({) =0, and there is a minimal positive integer e(¢) such that the
branches of (6) can be written as w;((z—?)"), i=1,...,n where
wi(2),..., w.(2) are analytic in a neighborhood of z = 0. Let C{{(z — {)"**’}} be
the field of convergent Laurent series in (z — £)"“. This field has a canonical
automorphism, denoted o (¢), that is fixed on the elements of C{{(z — O)}}. It acts
on a((z ~ {)"*“)) where a(z) is analytic in a neighborhood of z = { by mapping
it to a(e*™"*©(z — ¢)"*“’). Regard (, as a subfield of C{{(z — £)"“*}}. Since Q, is
a splitting field over C(z), and o ({) is fixed on C(z), restriction of o ({) to £}, is
an automorphism of {),. We continue to denote it by o(¢).

We now explain the Riemann-Hurwitz formula [1, 1. 27). Just as for { €C
there is an element o () corresponding to { = . That is, there is a minimal
positive integer e() such that wi(z™"*®),..., w,(z ) are branches of (6)
where wy, ..., w, are meromorphic (not necessarily analytic) in a neighborhood
of z =0. For each { satisfying D({)= 0 write o({) (regarded as an element of
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S.) as a product of disjoint cycles B;--- B, with 8 of length s,,i=1,... ¢
Denote the sum 2i_, (s — 1) by ind (¢({)), and do similarly for the element o ().
Then the Riemann-Hurwitz formula may be stated as follows under the
condition that p(w, z) is irreducible:

™ 2(deg. (p) + g(p)— 1) = 2, ind(a({))+ind (o (=),

I

where g(p) is a nonnegative integer (the geometric genus of p). If p(w,z) is
reducible, write it as a product pi(w, z)- - - p.(w, z). Then formula (7) applies to
each factor p;(w, z) separately if we restrict o({) to act on (), (and the zeros of
pi(w,z)),i =1,..., u In what follows we state Theorems 4.22 and 4.24 of [3] and
give alternative short proofs.

THEOREM 2. Let { be a simple root of D(z). Then ind(o({))=1 and { is a
branch point of (6) for which p(w,{)=0 has n —1 distinct roots.

PrOOF. Regard p(w, z) as a polynomial in w with coefficients in C{{z — {}} =
K. Over this field it factors as pi(w, z) - - - p.(w, z) where deg. (p1), ..., deg. (p.)
are the lengths of the disjoint cycles of o () and all roots of p;(w, {) are the
same, i = 1,..., u. Now assume that { is a simple root of D(z). From formula (4)
(applied inductively to p,...,p.) conclude that p,(w,{),...,p.(w, {) have no
common roots, and at most one of these has degree exceeding 1. Assume that
pi(w, £) has s multiple roots. We show that (z — ¢)*' divides D(p,). Since { is a
simple root of D(z), this gives s =2 and the theorem is done.

Indeed, there is a function w(z)=a,z +a,z>+-- -, analytic in a neighbor-
hood of z =0, such that

W((Z _ {)lls)’ w(eZm'/s (Z — {)1/: ), el w(eZvri(s—l)/: (Z _ {)l/s)

are exactly the branches of p(w, z) = 0 in a neighborhood of z = {. Therefore
®) D)= [l (@e™(@z-0)"+)-(ae™ @ - " +--)).
Osi<kss—1

Clearly this is divisible by ((z —¢)"*)*“™"=(z = {)'"". This concludes the proof
from the first paragraph. [ |

THEOREM 3. Let { be a root of D(z) of even order. Then ind (o({)) is even.
Assume in addition that { is a double root of D(z). Then one of the following
holds.

(@) p(w,¢)=0 has n—1 distinct roots and all branches of p(w,z)=0 are
analytic in a neighborhood of {;
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(ii) p(w,{)=0 has n -2 distinct roots and o ({) consists of one disjoint cycle of
length 3; or

(i) p(w, ) =0 has n —2 distinct roots and o ({) consists of 2 disjoint cycles of
length 2

PrROOF. As we did in the proof of Theorem 2, consider p(w,z) over
K =C{{z — {}}. The condition that ¢ is a root of D(z) of even order is
equivalent to D(z) = ((z — {)'h(z)) where h({) #0and h(z) € K. That is, D(z)
is a square in K. Therefore o({) (the generator of G(Q2,/K)) is in A, and
ind (o ({)) is even. Again write p as p; - - - p., a product of irreducible factors over
K with deg(p:)=s. For simplicity assume s;=s,;Z---Zs. From the last
paragraph of the proof of Theorem 2, ind(o({))=Z-,s — 1 =5 =2] where
$1,--., 8. are the lengths of the disjoint cycles of o (¢). Now take [ = 1. From (4),
2 times the number of analytic branches added to s is bounded by 2.

The case s = 0 implies that o({) is the identity and corresponds to (i); and the
case s = 2 corresponds to (ii) or (iii) depending on whether o ({) is a 3-cycle or a
product of two disjoint 2-cycles. ]

CoOROLLARY 4. Let p(w, z) € C[w, z] be monic in w and of degree n. Assume
that D(z) is not identically zero, and that it has { as a root of even order. If
p(w, ) =0 has precisely n — 1 distinct roots, then all branches of p(w, z) =0 are
analytic in a neighborhood of { (i.e., o({) is the identity).

ProOF. From Theorem 3, ind (o(¢)) is even and n —ind (o ({)) is an upper
bound fr the number of distinct roots of p(w, (). Conclude that ind (o(¢)) = 0.
That is, (i) of Theorem 3 holds. n

We now generalize Theorem 1.

THEOREM 5. Let p(w, z) be a monic nondegenerate polynomial of degree n in
w. Assume for each { €C that

9 p(w, {) =0 has at least n — 1 distinct roots.
Assume also that D (p) is a square. Then p(w, z) splits into linear factors in w.

Proor. For each { €C, Corollary 4 implies that o({) is the identity. With no
loss we may assume that p(w,z) is irreducible over C(z). Apply the
Riemann-Hurwitz formula in (7). As ind(o(®))=n -1 and g(p)=0, we get
2(n —1)= n — 1. The only possibility is that n = 1. ]

THEOREM 6. Let p(w,z)E C[w, z] be a monic nondegenerate polynomial of
degree n in w. Assume for each { € C that (9) holds. Suppose that D(z) has m
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roots of odd order. Let p(w,z)= pi(w,z) - p.(w, z) be the decomposition of p
into irreducible monic factors in C{w, z]. Then

(10) mzsu(degw(p.-)— =m.

In particular, if m +1<n, then p(w, z) is reducible. Also if m =1, then there
exists i such that deg(p)=2. Finally, if m =1, then p(w,z) splits into one
irreducible quadric and n —?2 linear factors in w.

ProoOF. The assumptions (and (4)) imply that the roots of D(p\),..., D(p.)
are pairwise distinct, and the number of odd roots add up to m.

Let m; be the number of odd roots of D(p:), i = 1,..., u. Apply (7) to each p;
separately, i =1,...,u (as in the proof of Theorem 5) to get deg(p))—1=m;
with equality if and only if

1n deg(p)—1=ind(o(x);) and g(p)=0

where o (»); is the o () associated to p.. Theorem 6 results from summing this
expression over i If m =1 there must be a factor of degree exceeding 1 for
Theorem 2. The remainder of the theorem follows easily. |

CoROLLARY 7. Let p(w, z) be an irreducible monic polynomial of degree at
least 2 that satisfies (9) and let m be the number of roots of odd degree of D(z).
Then deg.(p) = m + 1 with equality if and only if { = « is totally ramified (o ()
is a deg., (p)-cycle) and there exist nonconstant polynomials h, g € C[x] such that
p(g(x), h(x))=0 and (deg(g),deg(h))=1.

Proor. From (11) the function field C(w, z) of the curve p{(w,z)}=10 is of

genus zero, and therefore C(w, z) = C(w') for some element w' € C(w, z). Thus
there exist h, g € C(x) such that

(12) h(w)=z2 and g(w)=w.

We can adjust w' by a linear fractional transformation to assume that w' = is
the only value of w' over z =%. Thus h(w’) must be a polynomial. Furthermore,
since p(w, z) is monic in w the total ramification condition implies that w is a
Laurent series in z " with n = deg. (p), but not in z7* for e any integer
smaller than n. The leading coefficient of the Puiseux expansion for w about « is
of the form

jin—i

j~1)n—i i—2)/n—i
W= aoz +azV T gz

where (i, j) is the integer pair for which w'z’ has a nonzero coefficient in P(w, z)
and j/n — i is maximal. Thus this occurs for i = 0 (because of total ramification)
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and the corresponding term is (0, m) with (n,m)=1 and deg.(p(w,z))=m.
Conclude therefore that C(w, z) is also totally ramified over w = . That is, g is
also a polynomial. [ |

Consider polynomials p(w, z) =0 that satisfy the conclusion of Corollary 7:
p(g(x),h(x))=0 for some nonconstant polynomials h,g €C[x]. Clearly,
p(w,z)=h(w)— z are nonsingular examples, and p(w,z)=w'+w*—2%is a
singular example (i.e.,

0=P =32 42w =2L=1,
aw dz

has the solution (0,0)). A complete description of such polynomials (satisfying
condition (9)) would be interesting. In the case that the fields C(w) and C(z)
(inside the function field of p(w, z) = 0) have nontrivial intersection (more than
just C), then Theorem 3 of [2] shows that p(w, z) must be a linear change of
variables of one of two types of examples: (a) w" — 2", (m,n)=1; or (b)
T.(w)— T.(z), (m,n)=1, where T,(z) is the nth Chebychev polynomial (i.e.,
T.(cos(8))=cos(nh)). If n >2 in case (a), or if n =4 in case (b) then condition
(9) no longer holds. Since the condition that C(w) and C(z) have nontrivial
intersection immediately implies that p(w,z) divides a variable separated
polynomial, we have listed all cases of this occurring above.

3. Splitting of polynomials over the integers

Let K =17, as in the introduction, be the ring of integers, Q the field of
rationals. Assume that p(w) € Z[w] is a monic polynomial. Suppose that D(p) s
a nonzero square. In order to deduce that p(w) splits in Z we must assume an
analogue of the condition (9) of Theorem 5: For each prime g which divides
D(p)

(13) p(w)=(w — w(q))’g(w)mod q),
g(w(g))#0(modq),  D(g)#0(modgq).
THEOREM 8. Let p(w) be a monic polynomial with integer coefficients. As-

sume that D(p) is a nonzero square and that (13) holds. Then p(w) splits over the
integers.

Proor. Let ), be the splitting field of p(w) over Q, and let 0, be the
elements of (), that are integral over Z. For each prime ideal 7 of 0, the inertial
group of m is defined as follows:

I(m)={0 € G(1,,Q), (w) = = and the induced map on 0, /7 is trivial}.
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Assume that the ideal 7 NZ is generated by the prime q. Let o € I(7) be a

nontrivial element. Then o permutes the roots A,..., A, €0, of p(w). If
o(A;) = A; then

a(A)=A; = A (mod 7)

since o acts trivially on @, /. Thus, for i# j, Ai(mod 7) and A;(mod =) give a
repeated zero of p(w)mod q. Therefore (13) implies that o can interchange at
most two elements of Ay,..., A, If ¢ moves exactly two elements, then o is a
2-cycle € S, — A,.. However, the assumption that D (p) is a square implies that

G}, Q) CA..

Thus I(7) is trivial for each prime ideal 7. Now, Minkowski’s theorem [S,
Theorem 5.4.10] implies that if [, : Q] > 1, then there exists , a prime ideal of

0, such that | I(7)|>1.So [Q, : Q] = 1: p(w) splits in Q. [ |
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