A DISCRIMINANT CRITERIA FOR REDUCIBILITY OF A POLYNOMIAL

BY

M. FRIED*.* AND S. FRIEDLAND**.

^aDepartment of Mathematics, University of California at Irvine, Irvine, CA 92717, USA; and ^bInstitute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

ABSTRACT

Let p(w) be a polynomial over a domain K. If p splits to linear factors then the discriminant D(p) is a square in K. In this paper we state an additional condition on the roots of p which together with the discriminant condition imply the splitting of p in case that K = C[z] or Z. Some extensions are also discussed.

1. Introduction

Let K be a domain (a commutative ring without zero divisors) with unity. As usual denote by $K[w_1, \ldots, w_t]$ the ring of polynomials in t variables w_1, \ldots, w_t . Assume that p(w) and q(w) are monic polynomials in K[w]. That is

(1)
$$p(w) = w^{n} + a_{1}w^{n-1} + \dots + a_{n}, \qquad q(w) = w^{m} + b_{1}w^{m-1} + \dots + b_{m},$$

 $a_{i}, b_{j} \in K, \quad i = 1, \dots, n, \quad j = 1, \dots, m.$

Let \tilde{K} be an algebraic closure of K. Thus p(w) and q(w) split into linear factors over \tilde{K} :

(2)
$$p(w) = (w - \lambda_1) \cdots (w - \lambda_n), \qquad q(w) = (w - \mu_1) \cdots (w - \mu_m).$$

The resultant R(p,q) and the discriminant D(p) are defined to be

(3)
$$R(p,q) = \prod_{1 \le i \le n, 1 \le j \le m} (\lambda_i - \mu_j), \qquad D(p) = \prod_{1 \le i < j \le n} (\lambda_i - \lambda_j)^2.$$

" Supported in part by US-Israel Binational Science Foundation grant 3225/84.

Current address: Department of Mathematics, University of Illinois, Chicago, IL 60680, USA. Received March 11, 1985

[†] Visiting Lady Davis Research Professor at the Hebrew University of Jerusalem, Fall Semester, 1984.

It is well known that R(p,q) and D(p) are polynomials in the corresponding coefficients

$$R(p,q) = R(a_1,...,a_n,b_1,...,b_m), \qquad D(p) = D(a_1,...,a_n)$$

[6, Appendix 4, Sec. 9, 10]. That is, R(p,q) and $D(p) \in K$ are well defined for any p(w), $q(w) \in K[w]$. Let r(w) be a monic polynomial in K[w]. Suppose furthermore that r(w) can be written as p(w)q(w) with $p, q \in K[w]$ (i.e., r(w) is reducible). Then (3) gives

(4)
$$D(pq) = D(p)D(q)R(p,q)^{2}$$

Thus, there is a connection between the reducibility of p and the form of D(p). In particular, if p(w) splits in K then D(p) is a square in K.

If, however, D(p) is a square in K we then can deduce, in general, the following condition. Let Ω_p be splitting field of p(w). Denote the group of automorphisms of Ω_p which fix all the elements in K by $G(\Omega_p, K)$. Since any element of $G(\Omega_p, K)$ acts faithfully on the roots $\lambda_1, \ldots, \lambda_n$ of p we view $G(\Omega_p, K)$ as a subgroup of the symmetric group S_n .

Clearly, the condition that D(p) is a square in K is equivalent to the condition $\prod_{1 \le i < j \le n} (\lambda_i - \lambda_j) \in K$. Thus, any $\sigma \in G(\Omega_p, K)$ must preserve the above product. In particular,

$$(5) G(\Omega_p, K) \subset A_n$$

where A_n is the alternating group of degree n.

Motzkin and Taussky [4] considered a condition, sufficient when combined with (5), to guarantee the splitting of p(w) over K.

THEOREM 1 (Motzkin-Taussky). Let p(w) be a monic polynomial in w over $K[z, \zeta]$. Assume that K is an algebraically closed field with characteristic not 2. Suppose also that $p(w) = p(w, z, \zeta)$ is a homogeneous polynomial. Then p(w) splits into linear factors over $K[z, \zeta]$ if the following conditions hold:

(i) D(p) is a square in $K[z, \zeta]$; and

(ii) for any fixed values $(z, \zeta) \neq (0, 0)$ the polynomial $p(w, z, \zeta)$ has neither triple roots nor two distinct double roots.

In fact Motzkin and Taussky stated this Theorem 1 for special polynomials

$$p(w, z, \zeta) = \det(wI - zA - \zeta B)$$

where A and B are $n \times n$ matrices with entries in K. But their proof applies for any $p(w, z, \zeta)$ satisfying the above condition.

The purpose of this paper is to generalize the Motzkin-Taussky theorem to two distinct cases. First we extend the above result to polynomials p(w) over the ring C[z]. Second we give a version of the above theorem for polynomials p(w)with integer coefficients. In the first case our main tool is the Riemann-Hurwitz formula. The second case is an application of a theorem of Minkowski [5, Theorem 5.4.10] and it responds to a question of H. Furstenberg.

The second author would like to thank Olga Taussky-Todd for her suggestion to extend the Motzkin-Taussky theorem. We dedicate this paper to her.

2. Reducible polynomials in two variables

Let K be $\mathbb{C}[z]$, the ring of polynomials over the complex numbers. Assume that $p = p(w, z) \in \mathbb{C}[w, z]$ is monic with respect to w. Then the discriminant D(p) = D(z) is a polynomial in z. Call p nondegenerate if $D(p) \neq 0$. Clearly p is degenerate if and only if p has a multiple factor. Assume that p is a nondegenerate monic polynomial of degree $n \ge 2$ in w. Then $\zeta \in \mathbb{C}$ is a zero of D(z) if and only if the equation

$$(6) p(w,z) = 0$$

has a multiple zero in w when $z = \zeta$. If ζ is not a zero of D(z), then (6) has n distinct roots (branches) $w_1(z), \ldots, w_n(z)$ which are analytic in the neighborhood of ζ . It is, however, possible that $D(\zeta) = 0$, but (6) has n analytic branches in a neighborhood of ζ (i.e., ζ is a *singular* point of p). A point ζ is a *branch* point if (6) has fewer than n analytic roots in the neighborhood of ζ . Again this implies that $D(\zeta) = 0$, and there is a minimal positive integer $e(\zeta)$ such that the branches of (6) can be written as $w_i((z - \zeta)^{1/e(\zeta)})$, $i = 1, \ldots, n$, where $w_1(z), \ldots, w_n(z)$ are analytic in a neighborhood of z = 0. Let C{{ $(z - \zeta)^{1/e(\zeta)}$ } be the field of convergent Laurent series in $(z - \zeta)^{1/e(\zeta)}$. This field has a canonical automorphism, denoted $\sigma(\zeta)$, that is fixed on the elements of C{{ $(z - \zeta)$ }}. It acts on $\alpha((z - \zeta)^{1/e(\zeta)})$ where $\alpha(z)$ is analytic in a neighborhood of $z = \zeta$ by mapping it to $\alpha(e^{2\pi i/e(\zeta)}(z - \zeta)^{1/e(\zeta)})$. Regard Ω_p as a subfield of C{{ $(z - \zeta)^{1/e(\zeta)}$ }. Since Ω_p is a splitting field over C(z), and $\sigma(\zeta)$ is fixed on C(z), restriction of $\sigma(\zeta)$ to Ω_p is an automorphism of Ω_p . We continue to denote it by $\sigma(\zeta)$.

We now explain the Riemann-Hurwitz formula [1, I. 27]. Just as for $\zeta \in \mathbb{C}$ there is an element $\sigma(\infty)$ corresponding to $\zeta = \infty$. That is, there is a minimal positive integer $e(\infty)$ such that $w_1(z^{-1/e(\infty)}), \ldots, w_n(z^{-1/e(\infty)})$ are branches of (6) where w_1, \ldots, w_n are meromorphic (not necessarily analytic) in a neighborhood of z = 0. For each ζ satisfying $D(\zeta) = 0$ write $\sigma(\zeta)$ (regarded as an element of

 S_n) as a product of disjoint cycles $\beta_1 \cdots \beta_i$ with β_i of length $s_i, i = 1, \dots, t$. Denote the sum $\sum_{i=1}^{t} (s_i - 1)$ by ind $(\sigma(\zeta))$, and do similarly for the element $\sigma(\infty)$. Then the Riemann-Hurwitz formula may be stated as follows under the condition that p(w, z) is irreducible:

(7)
$$2(\deg_w(p) + g(p) - 1) = \sum_{\zeta \in C} \operatorname{ind} (\sigma(\zeta)) + \operatorname{ind} (\sigma(\infty)),$$

where g(p) is a nonnegative integer (the geometric genus of p). If p(w, z) is reducible, write it as a product $p_1(w, z) \cdots p_u(w, z)$. Then formula (7) applies to each factor $p_i(w, z)$ separately if we restrict $\sigma(\zeta)$ to act on Ω_{p_i} (and the zeros of $p_i(w, z)$), i = 1, ..., u. In what follows we state Theorems 4.22 and 4.24 of [3] and give alternative short proofs.

THEOREM 2. Let ζ be a simple root of D(z). Then $ind(\sigma(\zeta)) = 1$ and ζ is a branch point of (6) for which $p(w, \zeta) = 0$ has n - 1 distinct roots.

PROOF. Regard p(w, z) as a polynomial in w with coefficients in $\mathbb{C}\{\{z - \zeta\}\} = K$. Over this field it factors as $p_1(w, z) \cdots p_u(w, z)$ where deg_w $(p_1), \ldots, \text{deg}_w(p_u)$ are the lengths of the disjoint cycles of $\sigma(\zeta)$ and all roots of $p_i(w, \zeta)$ are the same, $i = 1, \ldots, u$. Now assume that ζ is a simple root of D(z). From formula (4) (applied inductively to p_1, \ldots, p_u) conclude that $p_1(w, \zeta), \ldots, p_u(w, \zeta)$ have no common roots, and at most one of these has degree exceeding 1. Assume that $p_1(w, \zeta)$ has s multiple roots. We show that $(z - \zeta)^{s-1}$ divides $D(p_1)$. Since ζ is a simple root of D(z), this gives s = 2 and the theorem is done.

Indeed, there is a function $w(z) = a_1 z + a_2 z^2 + \cdots$, analytic in a neighborhood of z = 0, such that

$$w((z-\zeta)^{1/s}), w(e^{2\pi i/s}(z-\zeta)^{1/s}), \ldots, w(e^{2\pi i(s-1)/s}(z-\zeta)^{1/s})$$

are exactly the branches of $p_1(w, z) = 0$ in a neighborhood of $z = \zeta$. Therefore

(8)
$$D(p_1) = \prod_{0 \leq l < k \leq s-1} ((a_1 e^{2\pi i l/s} (z-\zeta)^{1/s} + \cdots) - (a_1 e^{2\pi i k/s} (z-\zeta)^{1/s} + \cdots))^2.$$

Clearly this is divisible by $((z - \zeta)^{1/s})^{s(s-1)} = (z - \zeta)^{s-1}$. This concludes the proof from the first paragraph.

THEOREM 3. Let ζ be a root of D(z) of even order. Then ind $(\sigma(\zeta))$ is even. Assume in addition that ζ is a double root of D(z). Then one of the following holds.

(i) $p(w, \zeta) = 0$ has n - 1 distinct roots and all branches of p(w, z) = 0 are analytic in a neighborhood of ζ ;

(ii) $p(w, \zeta) = 0$ has n - 2 distinct roots and $\sigma(\zeta)$ consists of one disjoint cycle of length 3; or

(iii) $p(w, \zeta) = 0$ has n - 2 distinct roots and $\sigma(\zeta)$ consists of 2 disjoint cycles of length 2

PROOF. As we did in the proof of Theorem 2, consider p(w, z) over $K = \mathbb{C}\{\{z - \zeta\}\}$. The condition that ζ is a root of D(z) of even order is equivalent to $D(z) = ((z - \zeta)^l h(z))^2$ where $h(\zeta) \neq 0$ and $h(z) \in K$. That is, D(z) is a square in K. Therefore $\sigma(\zeta)$ (the generator of $G(\Omega_p/K)$) is in A_n and ind $(\sigma(\zeta))$ is even. Again write p as $p_1 \cdots p_u$, a product of irreducible factors over K with deg $(p_i) = s_i$. For simplicity assume $s_1 \ge s_2 \ge \cdots \ge s_u$. From the last paragraph of the proof of Theorem 2, $\operatorname{ind}(\sigma(\zeta)) = \sum_{i=1}^{u} s_i - 1 = s \le 2l$ where s_1, \ldots, s_u are the lengths of the disjoint cycles of $\sigma(\zeta)$. Now take l = 1. From (4), 2 times the number of analytic branches added to s is bounded by 2.

The case s = 0 implies that $\sigma(\zeta)$ is the identity and corresponds to (i); and the case s = 2 corresponds to (ii) or (iii) depending on whether $\sigma(\zeta)$ is a 3-cycle or a product of two disjoint 2-cycles.

COROLLARY 4. Let $p(w, z) \in \mathbb{C}[w, z]$ be monic in w and of degree n. Assume that D(z) is not identically zero, and that it has ζ as a root of even order. If $p(w, \zeta) = 0$ has precisely n - 1 distinct roots, then all branches of p(w, z) = 0 are analytic in a neighborhood of ζ (i.e., $\sigma(\zeta)$) is the identity).

PROOF. From Theorem 3, ind $(\sigma(\zeta))$ is even and $n - \text{ind}(\sigma(\zeta))$ is an upper bound fr the number of distinct roots of $p(w, \zeta)$. Conclude that $\text{ind}(\sigma(\zeta)) = 0$. That is, (i) of Theorem 3 holds.

We now generalize Theorem 1.

THEOREM 5. Let p(w, z) be a monic nondegenerate polynomial of degree n in w. Assume for each $\zeta \in \mathbb{C}$ that

(9)
$$p(w, \zeta) = 0$$
 has at least $n - 1$ distinct roots.

Assume also that D(p) is a square. Then p(w, z) splits into linear factors in w.

PROOF. For each $\zeta \in \mathbb{C}$, Corollary 4 implies that $\sigma(\zeta)$ is the identity. With no loss we may assume that p(w, z) is irreducible over $\mathbb{C}(z)$. Apply the Riemann-Hurwitz formula in (7). As ind $(\sigma(\infty)) \leq n-1$ and $g(p) \geq 0$, we get $2(n-1) \leq n-1$. The only possibility is that n = 1.

THEOREM 6. Let $p(w, z) \in \mathbb{C}[w, z]$ be a monic nondegenerate polynomial of degree n in w. Assume for each $\zeta \in \mathbb{C}$ that (9) holds. Suppose that D(z) has m

roots of odd order. Let $p(w, z) = p_1(w, z) \cdots p_u(w, z)$ be the decomposition of p into irreducible monic factors in $\mathbb{C}[w, z]$. Then

(10)
$$\sum_{1\leq i\leq u} (\deg_w(p_i)-1) \leq m.$$

In particular, if m + 1 < n, then p(w, z) is reducible. Also if $m \ge 1$, then there exists i such that $\deg(p_i) \ge 2$. Finally, if m = 1, then p(w, z) splits into one irreducible quadric and n - 2 linear factors in w.

PROOF. The assumptions (and (4)) imply that the roots of $D(p_1), \ldots, D(p_u)$ are pairwise distinct, and the number of odd roots add up to m.

Let m_i be the number of odd roots of $D(p_i)$, i = 1, ..., u. Apply (7) to each p_i separately, i = 1, ..., u (as in the proof of Theorem 5) to get deg $(p_i) - 1 \le m_i$ with equality if and only if

(11)
$$\deg(p_i) - 1 = \operatorname{ind}(\sigma(\infty)_i) \text{ and } g(p_i) = 0$$

where $\sigma(\infty)_i$ is the $\sigma(\infty)$ associated to p_i . Theorem 6 results from summing this expression over *i*. If m = 1 there must be a factor of degree exceeding 1 for Theorem 2. The remainder of the theorem follows easily.

COROLLARY 7. Let p(w, z) be an irreducible monic polynomial of degree at least 2 that satisfies (9) and let m be the number of roots of odd degree of D(z). Then deg_w $(p) \le m + 1$ with equality if and only if $\zeta = \infty$ is totally ramified $(\sigma(\infty))$ is a deg_w(p)-cycle) and there exist nonconstant polynomials h, $g \in \mathbb{C}[x]$ such that $p(g(x), h(x)) \equiv 0$ and $(\deg(g), \deg(h)) = 1$.

PROOF. From (11) the function field C(w, z) of the curve p(w, z) = 0 is of genus zero, and therefore C(w, z) = C(w') for some element $w' \in C(w, z)$. Thus there exist $h, g \in C(x)$ such that

(12)
$$h(w') = z$$
 and $g(w') = w$.

We can adjust w' by a linear fractional transformation to assume that $w' = \infty$ is the only value of w' over $z = \infty$. Thus h(w') must be a polynomial. Furthermore, since p(w, z) is monic in w the total ramification condition implies that w is a Laurent series in $z^{-1/n}$ with $n = \deg_w(p)$, but not in $z^{-1/e}$ for e any integer smaller than n. The leading coefficient of the Puiseux expansion for w about ∞ is of the form

$$w = a_0 z^{j/n-i} + a_1 z^{(j-1)/n-i} + a_2 z^{(j-2)/n-i} + \cdots$$

where (i, j) is the integer pair for which $w^i z^j$ has a nonzero coefficient in P(w, z)and j/n - i is maximal. Thus this occurs for i = 0 (because of total ramification) and the corresponding term is (0, m) with (n, m) = 1 and $\deg_z(p(w, z)) = m$. Conclude therefore that C(w, z) is also totally ramified over $w = \infty$. That is, g is also a polynomial.

Consider polynomials p(w, z) = 0 that satisfy the conclusion of Corollary 7: $p(g(x), h(x)) \equiv 0$ for some nonconstant polynomials $h, g \in \mathbb{C}[x]$. Clearly, p(w, z) = h(w) - z are nonsingular examples, and $p(w, z) = w^3 + w^2 - z^2$ is a singular example (i.e.,

$$0 = \frac{\partial p}{\partial w} = 3w^2 + 2w = \frac{\partial p}{\partial z} = 2z$$

has the solution (0,0)). A complete description of such polynomials (satisfying condition (9)) would be interesting. In the case that the fields C(w) and C(z)(inside the function field of p(w, z) = 0) have nontrivial intersection (more than just C), then Theorem 3 of [2] shows that p(w, z) must be a linear change of variables of one of two types of examples: (a) $w^n - z^m$, (m, n) = 1; or (b) $T_n(w) - T_m(z)$, (m, n) = 1, where $T_n(z)$ is the *n*th Chebychev polynomial (i.e., $T_n(\cos(\theta)) = \cos(n\theta)$). If n > 2 in case (a), or if $n \ge 4$ in case (b) then condition (9) no longer holds. Since the condition that C(w) and C(z) have nontrivial intersection immediately implies that p(w, z) divides a variable separated polynomial, we have listed all cases of this occurring above.

3. Splitting of polynomials over the integers

Let $K = \mathbb{Z}$, as in the introduction, be the ring of integers, \mathbb{Q} the field of rationals. Assume that $p(w) \in \mathbb{Z}[w]$ is a monic polynomial. Suppose that D(p) is a nonzero square. In order to deduce that p(w) splits in \mathbb{Z} we must assume an analogue of the condition (9) of Theorem 5: For each prime q which divides D(p)

(13)
$$p(w) = (w - w(q))^2 g(w) (\mod q),$$

 $g(w(q)) \neq 0 (\mod q), \quad D(g) \neq 0 (\mod q).$

THEOREM 8. Let p(w) be a monic polynomial with integer coefficients. Assume that D(p) is a nonzero square and that (13) holds. Then p(w) splits over the integers.

PROOF. Let Ω_p be the splitting field of p(w) over \mathbf{Q} , and let \mathcal{O}_p be the elements of Ω_p that are integral over \mathbf{Z} . For each prime ideal π of \mathcal{O}_p the inertial group of π is defined as follows:

 $I(\pi) = \{ \sigma \in G(\Omega_p, \mathbf{Q}), \sigma(\pi) = \pi \text{ and the induced map on } \mathcal{O}_p / \pi \text{ is trivial} \}.$

Assume that the ideal $\pi \cap \mathbb{Z}$ is generated by the prime q. Let $\sigma \in I(\pi)$ be a nontrivial element. Then σ permutes the roots $\lambda_1, \ldots, \lambda_n \in \mathcal{O}_p$ of p(w). If $\sigma(\lambda_i) = \lambda_i$ then

$$\sigma(\lambda_i) \equiv \lambda_i \equiv \lambda_i \pmod{\pi}$$

since σ acts trivially on \mathcal{O}_p/π . Thus, for $i \neq j$, $\lambda_i \pmod{\pi}$ and $\lambda_j \pmod{\pi}$ give a repeated zero of $p(w) \mod q$. Therefore (13) implies that σ can interchange at most two elements of $\lambda_1, \ldots, \lambda_n$. If σ moves exactly two elements, then σ is a 2-cycle $\in S_n - A_n$. However, the assumption that D(p) is a square implies that

 $G(\Omega_p, \mathbf{Q}) \subset A_n$.

Thus $I(\pi)$ is trivial for each prime ideal π . Now, Minkowski's theorem [5, Theorem 5.4.10] implies that if $[\Omega_p : \mathbf{Q}] > 1$, then there exists π , a prime ideal of \mathcal{O}_p such that $|I(\pi)| > 1$. So $[\Omega_p : \mathbf{Q}] = 1 : p(w)$ splits in \mathbf{Q} .

References

1. H. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, New York, 1980.

2. M. Fried, On Ritt's theorem and related Diophantine problems, J. Reine Angew. 264 (1973), 40-55.

3. S. Friedland, Simultaneous similarity of matrices, Adv. in Math. 50 (1983), 189-265.

4. T. S. Motzkin and O. Taussky, Pairs of matrices with property L. II, Trans. Amer. Math Soc. 73 (1955), 387-401.

5. E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963.

6. H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, Mass., 1972.