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A B S T R A C T  

Let p(w) be a polynomial over a domain K. If p splits to linear factors then the 
discriminant D(p) is a square in K. In this paper we state an additional 
condition on the roots of p which together with the discriminant condition imply 
the splitting of p in case that K = C[z ] or Z. Some extensions are also discussed. 

I. Introduction 

Let  K be a d o m a i n  (a c o m m u t a t i v e  r ing wi thout  zero  divisors)  with unity. As  

usual  d e n o t e  by  K[wz . . . .  , w,] the  r ing of po lynomia l s  in t va r iab les  w~ . . . . .  w,. 

A s s u m e  that  p ( w )  and q ( w )  are  monic  po lynomia l s  in K[w]. Tha t  is 

(1) p ( w ) = w " + a l w "  l + . . . + a , ,  q ( w ) = w " + b , w ' - ' + . . . + b , , ,  

a~,biEK, i = 1  . . . . .  n, j = l  . . . . .  m. 

L e t / ~  be  an a lgebra i c  c losure  of K. Thus  p ( w )  and q ( w )  spli t  into l inear  factors  

over  /~: 

(2) p ( w ) = ( w  - /~1)" " ( w  --l~n) , q ( W ) = ( W  --IZ,)'" "(W --tZ,,). 

The  resu l tan t  R ( p , q ) a n d  the d i sc r iminan t  D ( p ) a r e  def ined to be 

(3) R ( p , q ) =  1-I (• , - lz , ) ,  O ( p ) =  I-I ( A , - A , )  z. 
l~i<n,l~j~_m l~_i<j~n 
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It is well known that R(p,q) and D(p) are polynomials in the corresponding 

coefficients 

R(p,q)= R(a, . . . . .  an, b, . . . . .  b,,), D(p)= D(a, . . . . .  an) 

[6, Appendix 4, Sec. 9, 10]. That is, R(p,q) and D(p)E K are well defined for 

any p(w), q(w)~K[w].  Let r(w) be a monic polynomial in Kiwi. Suppose 

furthermore that r(w ) can be written as p (w)q(w ) with p, q ~ K [w] (i.e., r(w ) is 

reducible). Then (3) gives 

(4) D(pq) = D(p)D(q)R(p, q)2. 

Thus, there is a connection between the reducibility of p and the form of 

D(p) .  In particular, if p(w) splits in K then D(p) is a square in K. 
If, however, D(p) is a square in K we then can deduce, in general, the 

following condition. Let f~p be splitting field of p(w). Denote the group of 

automorphisms of llp which fix all the elements in K by G(~'~p, K). Since any 

element of G(IIp, K) acts faithfully on the roots ;tl . . . . .  )t, of p we view 

G(fl , ,  K)  as a subgroup of the symmetric group Sn. 
Clearly, the condition that D(p) is a square in K is equivalent to the condition 

IIt~<j~n ()ti - Ai)E K. Thus, any tr E G (l)p, K)  must preserve the above product. 

In particular, 

(5) G(II,,  K)  C An 

where A, is the alternating group of degree n. 
Motzkin and Taussky [4] considered a condition, sufficient when combined 

with (5), to guarantee the splitting of p(w) over K. 

THEOREM 1 (Motzkin-Taussky). Let p(w) be a monic polynomial in w over 
K[z, ~]. Assume that K is an algebraically closed field with characteristic not 2. 
Suppose also that p(w)= p(w, z, ~) is a homogeneous polynomial. Then p(w) 

splits into linear factors over K[z, ~] if the following conditions hold: 
(i) D(p) is a square in K[z, ~']; and 
(ii) for any fixed values (z, ~)~ (0,0) the polynomial p(w, z, ~) has neither 

triple roots nor two distinct double roots. 

In fact Motzkin and Taussky stated this Theorem 1 for special polynomials 

p(w, z, ~') = det (wI - zA - ~B) 

where A and B are n x n matrices with entries in K. But their proof applies for 

any p(w, z, ~) satisfying the above condition. 
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The purpose of this paper is to generalize the Motzkin-Taussky theorem to 

two distinct cases. First we extend the above result to polynomials p(w) over the 

ring C[z]. Second we give a version of the above theorem for polynomials p(w) 
with integer coefficients. In the first case our main tool is the Riemann-Hurwitz 

formula. The second case is an application of a theorem of Minkowski [5, 

Theorem 5.4.10] and it responds to a question of H. Furstenberg. 

The second author would like to thank OIga Taussky-Todd for her suggestion 

to extend the Motzkin-Taussky theorem. We dedicate this paper to her. 

2. Reducible polynomials in two variables 

Let K be C[z], the ring of polynomials over the complex numbers. Assume 

that p =p(w,z)~C[w,z] is monic with respect to w. Then the discriminant 

D(p)  = D(z) is a polynomial in z. Call p nondegenerate if D(p)~ O. Clearly p is 

degenerate if and only if p has a multiple factor. Assume that p is a 

nondegenerate monic polynomial of degree n _-> 2 in w. Then ~" E C is a zero of 

D(z) if and only if the equation 

(6) p(w,z)=O 

has a multiple zero in w when z = (. If ~" is not a zero of D(z) ,  then (6) has n 

distinct roots (branches) w~(z) . . . . .  w,(z) which are analytic in the neighbor- 

hood of ~'. It is, however, possible that D(~') = 0, but (6) has n analytic branches 

in a neighborhood of s r (i.e., ~" is a singular point of p). A point ~ is a branch 
point if (6) has fewer than n analytic roots in the neighborhood of ~'. Again this 

implies that D(s r) = 0, and there is a minimal positive integer e(~') such that the 

branches of (6) can be written as w,((z-~)':'~)), i = 1  . . . . .  n, where 

wl(z),..., w,(z) are analytic in a neighborhood of z = O. Let C{{(z - ~.)l:e~}} be 

the field of convergent Laurent series in (z - ~),e~. This field has a canonical 

automorphism, denoted ~r(ff), that is fixed on the elements of C{{(z - ~')}}. It acts 

on a((z - ~.),/e(~)) where a(z) is analytic in a neighborhood of z = ff by mapping 
it to a ( e Z ~ ' i / e < ~ ) ( z  - ~.),/e(o). Regard lip as a subfield of C{{(z - ~- ) l / e (~)}} .  Since lip is 

a splitting field over C(z), and o-(~') is fixed on C(z), restriction of o-(~) to lip is 

an automorphism of fl u. We continue to denote it by o-(~'). 

We now explain the Riemann-Hurwitz formula [1, I. 27]. Just as for ~" ~ C 

there is an element ~(oo) corresponding to s r = oo. That is, there is a minimal 

positive integer e(oo) such that w~(z-'/'~=)),..., w,(z -""~)) are branches of (6) 

where wl . . . . .  w. are meromorphic (not necessarily analytic) in a neighborhood 

of z = 0. For each s r satisfying D(~') = 0 write tr(s r) (regarded as an element of 
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S,) as a product of disjoint cycles f l~. . . f l ,  with /3; of length s,, i =  1 . . . . .  t. 

Denote the sum Y-I=1 (s, - 1) by ind (tr(~')), and do similarly for the element tr(oo). 

Then the Riemann-Hurwitz formula may be stated as follows under the 

condition that p(w, z) is irreducible: 

(7) 2(degw (p) + g(p) - 1) = ~ ind (tr(~')) + ind (~(oo)), 
~EC 

where g(p) is a nonnegative integer (the geometric genus of p). If p(w, z)  is 

reducible, write it as a product pl(w, z ) . . .  p,(w, z). Then formula (7) applies to 

each factor pi(w, z) separately if we restrict tr(ff) to act on tip, (and the zeros of 

pi(w, z)), i = 1 , . . . ,  u. In what follows we state Theorems 4.22 and 4.24 of [3] and 

give alternative short proofs. 

THEOREM 2. Let ~ be a simple root of D(z) .  Then ind(tr(~'))= 1 and ~ is a 

branch point of (6) for which p(w, ~) = 0 has n - 1 distinct roots. 

PROOF. Regard p(w, z)  as a polynomial in w with coefficients in C{{z - st}} = 

K. Over this field it factors as pt(w, z ) . . .  p,(w, z) where degw(p0 . . . . .  degw(p,) 

are the lengths of the disjoint cycles of cr(~') and all roots of pi(w, ~) are the 

same, i -- 1 . . . . .  u. Now assume that ~ is a simple root of D(z) .  From formula (4) 

(applied inductively to pl . . . .  ,p , )  conclude that p~(w, ~) . . . . .  p,(w, ~) have no 

common roots, and at most one of these has degree exceeding 1. Assume that 

p~(w, ~) has s multiple roots. We show that (z - ~.)s-~ divides D(pl). Since ~" is a 

simple root of D(z) ,  this gives s = 2 and the theorem is done. 

Indeed, there is a function w ( z ) =  a~z +a2z2+ - . . ,  analytic in a neighbor- 

hood of z = 0, such that 

w((z - ~)l,,), w(e2~,,(z _ ~)l;,) . . . .  , w(e2,,,s-W,(z _ ~)1;~) 

are exactly the branches of pl(w, z) = 0 in a neighborhood of z = ~'. Therefore 

(8) D(pl) = o.~,<kI~I _1 ((ale2"t/'(z - ~)'/" + " "  ) -  (ale2'~ik/~( z - ()v, + . . .  ))2. 

Clearly this is divisible by ((z - ~)t;,),(,-t) = (z - ~)'-1. This concludes the proof 

from the first paragraph. • 

THEOREM 3. Let ~ be a root of D ( z )  of even order. Then ind(tr(~')) is even. 

Assume in addition that ~ is a double root of D(z) .  Then one of the following 

holds. 
(i) p (w,~ ' )=0  has n - 1  distinct roots and all branches of p ( w , z ) = O  are 

analytic in a neighborhood of ~ ; 
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(ii) p(w, ~) = 0 has n - 2 distinct roots and tr(~) consists o[ one disjoint cycle o[ 

length 3; or 

(iii) p(w, ~) = 0 has n - 2 distinct roots and o-(~) consists o[ 2 disjoint cycles o[ 

length 2 

PROOF. As we did in the proof of Theorem 2, consider p ( w , z )  over 

K=C{{z-~ '}} .  The condition that ~" is a root of D ( z )  of even order is 

equivalent to D ( z  ) = ((z - ~)th(z ))2 where h(~') : 0 and h(z  ) E K. That is, D ( z  ) 

is a square in K. Therefore o'(~') (the generator of G(I-I~/K)) is in A, and 

ind (tr(~')) is even. Again write p as p l" ' "  p,, a product of irreducible factors over 

K with deg(p~) = s~. For simplicity assume st--> s2= > " "  => s,. From the last 

paragraph of the proof of Theorem 2, ind (tr(~'))= Y.7.1 s~- 1 = s =< 21 where 

sl . . . .  , s, are the lengths of the disjoint cycles of tr(ff). Now take l = 1. From (4), 

2 times the number of analytic branches added to s is bounded by 2. 

The case s = 0 implies that tr(ff) is the identity and corresponds to (i); and the 

case s = 2 corresponds to (ii) or (iii) depending on whether tr(~') is a 3-cycle or a 

product of two disjoint 2-cycles. • 

COROLLARY 4. Let p(w,  z ) E  C[w, z] be monic in w and o[ degree n. Assume 

that D ( z )  is not identically zero, and that it has ~ as a root of even order. I[ 

p(w,  ~) = 0 has precisely n - 1 distinct roots, then all branches o[ p(w, z )  = 0 are 

analytic in a neighborhood of ~ (i.e., tr(~) is the identity). 

PROOF. From Theorem 3, ind (tr(~')) is even and n - i n d  (tr(~')) is an upper 

bound fr the number of distinct roots of p(w, ~). Conclude that ind (tr(~')) = 0. 

That is, (i) of Theorem 3 holds. • 

We now generalize Theorem 1. 

THEOREM 5. Let p (w, z )  be a monic nondegenerate polynomial o[ degree n in 

w. Assume for each ~ E C that 

(9) p(w, ~) = 0 has at least n - 1 distinct roots. 

Assume also that D (p ) is a square. Then p (w, z ) splits into linear [actors in w. 

PROOF. For each s r E C, Corollary 4 implies that o,(~') is the identity. With no 

loss we may assume that p ( w , z )  is irreducible over C(z). Apply the 

Riemann-Hurwitz formula in (7). As ind (tr(~)) < n -  1 and g(p) > 0, we get 

2(n - 1) <= n - 1. The only possibility is that n = 1. • 

THEOREM 6. Let p(w,  z )  E C[w, z] be a monic nondegenerate polynomial o[ 

degree n in w. Assume [or each ~ E C  that (9) holds. Suppose that D ( z )  has m 
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roots o / o d d  order. Let p(w, z )  = p~(w, z ) . . . p , ( w ,  z )  be the decomposition o / p  

into irreducible monic [actors in C/w, z]. Then 

(10) ,_.,~_~ ( d e g . ( p , ) -  1) =< m. 

In particular, i / m  + 1 < n, then p ( w , z )  is reducible. Also i / m  >-_ 1, then there 

exists i such that deg(p~)_->2. Finally, i/ m = 1, then p ( w , z )  splits into one 

irreducible quadric and n - 2  linear [actors in w. 

PROOF. The assumptions (and (4)) imply that the roots of D(pl )  . . . . .  D ( p , )  

are pairwise distinct, and the number of odd roots add up to m. 

Let m~ be the number of odd roots of D (p~), i = 1 . . . . .  u. Apply (7) to each p~ 

separately, i = 1 , . . . ,  u (as in the proof of Theorem 5) to get deg (p~)- 1 _-< m~ 

with equality if and only if 

(11) d e g ( p , ) - l = i n d ( c r ( ~ ) , )  and g(p~)=0 

where tr(~)~ is the cr(~) associated to p~. Theorem 6 results from summing this 

expression over i. If m = t there must be a factor of degree exceeding 1 for 

Theorem 2. The remainder of the theorem follows easily. • 

COROLLARY 7. Let p(w,  z )  be an irreducible monic polynomial o/degree at 

least 2 that satisfies (9) and let m be the number o/roots o / o d d  degree o / D ( z ) .  

Then d e g w ( p ) -  < _ m + 1 with equality i /and  only i[ ~ = ~ is totally ramified (cr(oo) 
is a degw(p )-cycle ) and there exist nonconstant polynomials h, g E C/x] such that 

p (g(x ) ,  h(x))=-O and (deg(g ) ,deg(h ) )  = 1. 

PROOF. From (11) the function field C(w, z )  of the curve p(w,  z ) =  0 is of 

genus zero, and therefore C(w, z)  = C(w')  for some element w ' E  C(w, z). Thus 

there exist h, g E C(x) such that 

(12) h ( w ' ) =  z and g ( w ' ) =  w. 

We can adjust w' by a linear fractional transformation to assume that w' = o0 is 

the only value of w' over z = 0o. Thus h (w') must be a polynomial. Furthermore,  

since p(w, z )  is monic in w the total ramification condition implies that w is a 

Laurent  series in z -'/" with n =degw(p),  but not in z -~/" for e any integer 

smaller than n. The leading coefficient of the Puiseux expansion for w about oo is 

of the form 
a Z (j-2)/n -i W = aoZ j/"-' + a~z u-')/"-' + z + • • • 

where (i, ]) is the integer pair for which w'z  j has a nonzero coefficient in P(w, z )  

and ]/n - i is maximal. Thus this occurs for i = 0 (because of total ramification) 
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and the corresponding term is (0, m ) w i t h  ( n , m ) =  1 and deg~(p(w,z ) )=  m. 

Conclude therefore that C(w, z) is also totally ramified over w = ~. That is, g is 

also a polynomial. • 

Consider polynomials p(w, z ) =  0 that satisfy the conclusion of Corollary 7: 

p(g(x),h(x))~O for some nonconstant polynomials h, g EC[x]. Clearly, 
p ( w , z ) = h ( w ) - z  are nonsingular examples, and p(w , z )=w3+w 2 2. - - Z  IS a 

singular example (i.e., 

0 =  0P=3w2+2W0w =00-ffz = 2 z  

has the solution (0,0)). A complete description of such polynomials (satisfying 

condition (9)) would be interesting. In the case that the fields C(w) and C(z) 

(inside the function field of p(w, z) = 0) have nontrivial intersection (more than 

just C), then Theorem 3 of [2] shows that p(w, z) must be a linear change of 
variables of one of two types of examples: (a) w " - z %  ( m , n ) = l ;  or (b) 

T , ( w ) -  Tin(z), (m, n) = 1, where T,(z) is the nth Chebychev polynomial (i.e., 

T, (cos (0 ) )=  cos (nO)). If n > 2 in case (a), or if n _---4 in case (b) then condition 

(9) no longer holds. Since the condition that C(w)  and C(z)  have nontrivial 

intersection immediately implies that p(w,z) divides a variable separated 

polynomial, we have listed all cases of this occurring above. 

3. Splitting of polynomials over the integers 

Let K = Z, as in the introduction, be the ring of integers, Q the field of 

rationals. Assume that p (w) E Z[ w] is a monic polynomial. Suppose that D (p) is 
a nonzero square. In order to deduce that p(w) splits in Z we must assume an 

analogue of the condition (9) of Theorem 5: For each prime q which divides 
D(p) 

(13) p(w) : (w - w(q)yg(w)(mod q), 

g(w(q))~O(modq), O(g)  ~ 0(mod q). 

THEOREM 8. Let p(w) be a monic polynomial with integer coefficients. As- 
sume that D(p) is a nonzero square and that (13) holds. Then p(w ) splits over the 
integers. 

PROOF. Let II~ be the splitting field of p(w) over Q, and let 6p be the 

elements of Op that are integral over Z. For each prime ideal ~" of lgp the inertial 

group of ¢r is defined as follows: 

I(~') = {o- ~ G(l~p, Q), o'(~r) = rr and the induced map on 0'p/Tr is trivial}. 
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Assume that the ideal ¢r f) Z is generated by the prime q. Let o- ~ I(Tr) be a 

nontrivial element. Then o- permutes the roots At . . . . .  A, ~ 6 ,  of p(w). If 

o'(A,) = Aj then 

o-(L)-= Aj --- A~(mod 7r) 

since o- acts trivially on ~p/Tr. Thus, for i~  j, A~(mod 7r) and A~(mod 7r) give a 

repeated zero of p (w)mod q. Therefore (13) implies that o can interchange at 

most two elements of At . . . . .  A,. If o- moves exactly two elements, then o- is a 

2-cycle E S, - A.. However, the assumption that D(p)is a square implies that 

G (~,, Q) c A,. 

Thus I(¢r) is trivial for each prime ideal rr. Now, Minkowski's theorem [5, 

Theorem 5.4.10] implies that if [lip : Q] > 1, then there exists ~, a prime ideal of 

~Tp such that l I(Tr) I > 1. So Ill 0 :Q] = 1 :p(w)  splits in Q. • 
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